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ABSTRACT 
 

For several years, crop models have been applied to describe and to estimate the magnitudes of 
weather and climate impacts on crop growth and production. This paper describes the AquaCrop 
model, constructed by the FAO, for the purpose of modelling and evaluation of crop production 
practices and climate change mitigation measures. AquaCrop is particularly useful for regions 
characterized with dry lands whereby soil water status plays a major role in yield potential, that is 
AquaCrop therefore embodies simple, accurate and stable performance. It has been then validated 
for global climate and management practices for simulation of crop phenology, biomass and yield, 
water balance and water use efficiency, and evapotranspiration. It has proved efficient in the 
application in crops like Maize, wheat, barley, tea, sorghum and pulse crops including groundnut 
and soya beans. Stress coefficients for water, fertilizing and temperature are used by AquaCrop for 
evaluating their impact on crop canopy growth and dry matter production, stomatal closure, 
flowering, pollination and harvest index. Three levels of calibration, those of canopy cover 
expansion, dry matter accruement and the relative amount of moisture in the root zone is also 
available to simulate growth conditions. Reliability of the developed model is assessed by different 
statistical measures such as Root Mean Square Error (RMSE), Nash-Sutcliffe efficiency, coefficient 
of determination (R²) and ratio (d). It plays the role of the decision support system in the context of 
climate change effects, water use efficiency, sowing dates, plant density and fertilizer practices 
under different climate conditions. 
 

 

Keywords: AquaCrop; crop models; drought resistant cultivars; agricultural production. 
 

1. INTRODUCTION 
 

AquaCrop is one of the developed models by 
FAO to provide an improved simulation 
instrument to meet the increasing demands for 
efficient crop water management due to climate 
change factors. Through its predilection to 
capture crop growth responses to various levels 
of irrigation and water use efficiency while taking 
into account intricate factors such as climate, 
soils and temperature, AquaCrop is a key model 
for evaluating climate change agriculture 
interactions (Greaves et al., 2016). To a certain 
extent AquaCrop is uncomplicated in the inputs it 
requires from the users – the main crop 
characteristics and environmental data – 
avoiding, therefore, other complexities that many 
other crop models require in order to provide 
similar outputs (Nzimande et al., 2021). 
Introducing water productivity is also possible 
with the help of this theory, which is vital for the 
analysis of water-scarce areas, mainly because 
of the increase in average global temperatures 
and uneven distribution of precipitation 
(Mabhaudhi et al., 2021). In addition, AquaCrop 
provides the basis for developing contextualized 
practices to improve the implementation of 
innovations at the farm level, including 
determining suitable planting dates, adjusting 
irrigation frequencies and designing drought 
resistant cultivars. As such, the model offers 
valuable information as to water use efficiency as 
well as crop yield potential under different climate 
conditions and, therefore, acts as a (Burgess et 

al., 2023) great decision-making tool for decision 
makers in the short-run agricultural operations as 
well as in the formulation of climate change 
adaptation policies in the long-run (Peter et al., 
2020). This model is especially advantageous for 
developing nations, where resources are scarce, 
and the environment is extremely sensitive to 
climate-related shocks (Signé et al., 2022). 
Further, the ability of the model to forecast 
climate changes as they would be abreast the 
food production also meets a global objective of 
improving food security (El-Sanatawy et al., 
2021) especially in vulnerable agro ecological 
regions (Barasa et al., 2021). Thus, as a 
contribution to the discussions on sustainable 
agricultural production, AquaCrop presents a 
theoretically grounded, quantitative simulation 
model of crop management capabilities that is 
still realistic in terms of application and potentially 
usable in the (Habib-ur-Rahman  et al., 2022) 
contexts of global climate change. based on the 
achievement of data integration and the 
calibration of AquaCrop models, this tool will still 
be a useful reference for building sustainable 
agricultural systems globally (Salman et al., 
2021). 
 

Primary reason is that agriculture is a many-
sided and rather sensitive branch in terms of 
weather and climate impacts. Climate change 
has become an increasingly Wicked problem for 
the agriculture business since it affects crop 
yields, resources, and food security for the 
developing countries with low adaptive ability 
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(Tisch et al., 2020). Climate, crop handling and 
other related factors are interrelated and are 
responsible for crop rate and yield. Nevertheless, 
aggregating them to incorporate the effects of 
these processes into the assessment of crop 
plants poses a challenge (Bedeke et al., 2023). 
Crop models have the ability to receive growth 
and productivity as feedbacks of different factors 
such as soil nutrients, salinity, drainage, 
moisture, soil temperature, tillage practices, 
types of irrigation (furrow, drip, sprinkler), 
mulching, dates of sowing, rates of seed, rainfall 
and management practices of weeds, insect 
pests and disease (Turner & Kodali, 2020). 
 
Site factors include temperature, wind, rainfall 
and drought, which depict the level of comfort 
that populations in specific-regions can 
experience in regard to planning and 
management needs (Brogden & Volz, 2023). 
Research reveals bioclimatic comfort areas 
(Ramsey, A. F. 2020) and, accordingly, drought 
assessments reflect climatic limits. 
Socioeconomic and political risks relevant to the 
analyzed droughts are identified. Some of the 
recent studies that have used the remote sensing 
have indicated that it will be useful in monitoring 
drought stress, current and the potentials to 
future land use changes will be constrained by 
rising sea levels (Msimanga, 2023). Weather 
based crop models have (Roquette Tenreiro, T. 
2022) come into focus to postulate solutions for 
increasing crop yields based on regional and or 
diurnal weather fluctuations. The application of 
modeling in agriculture (Morari et al., 2021) is 
driven by several factors: 

 
• Improved comprehension of operations in 

the soil water atmosphere continuum 
otherwise known as (SWA). 

• Interactive activities of the experts in 
different branches of knowledge. 

• Optimization of solving stiffer form of 
equations due to development of new 
computational codes. 

• Major improvements of the hardware and 
the supporting-software systems. 

• Large databases built over many years of 
experimental and survey work mainly in 
the developed world. 

• The need to include as many processes of 
the SWA as possible to provide the 
broadest possible picture of this turbulent 
system. 

 

As more and more aspects of human life become 
computerized, the chances of crop simulation-

models to be of help when it comes to dealing 
with a number of issues technology or otherwise 
concerning agricultural sustainability, food 
security, optimum utilization of resources, and 
protection of the environment will increase (Annie 
et al., 2023). Nonetheless, the work on 
simulating the future consequences on intricate 
matters of food security still goes on especially 
about local effects in the agro-ecological zones 
at the national level. For this reason, the 
countries and the international communities will 
greatly benefit from the development of elaborate 
national and international knowledge and data 
bases of the impacts that concerns the four 
constituent parts of food security (Paracchini et 
al., 2020). 
 

AquaCrop is specifically noteworthy when 
compared to the broad class of crop models, 
which have to strike a delicate balance of being 
accurate, simple, tough, and effortless. The 
model is for computation based end-users like 
the extension specialists, water managers, 
personnel involved in irrigation organizations and 
economists who need simplistic models for 
planning and regression analysis (Morelli et al., 
2023). Similar success has been talked in 
various crops like forages, vegetables, grains, 
fruits and root/tuber crops and almost all classes 
of soils, climates and management practices in 
different parts of the world. In any case, details of 
different stress coefficients (Ks), specific 
parameters, as well as management practices 
remain scarce information. Hence, this paper 
presents a synthesis of crop growth simulation 
using AquaCrop model as a modelling tool for 
climate change decision support, crop 
productivity, and food security (Tolomio& Casa, 
2020). It also presents a clear (Van Eupen, C et 
al. 2021) synthesis of data on different crop 
parameters, crop factors, calibration, and 
validation processes so as to make it easier for 
the user. 
 

1.1 Objectives 
 

The main objective of this paper is to assess the 
application of the AquaCrop-model under 
different soil, climate, and management 
practices, with the following specific objectives: 
 

• To learn about the ideas and approaches 
of the AquaCrop-model. 

• AquaCrop-modeled field productions can 
be used to assess AquaCrop-model 
applications when deployed as an on-farm 
decision support tool under different levels 
of soil, climate, and management regimes. 
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• To narrow down on appropriate measures 
for change in climate that can enhance the 
productivity of crops and food security. 

 

1.2 Crop Growth Simulation Models: 
Definitions and Concepts 

 

Crop simulation models help improve 
appreciation of architectural and physiological 
structure of crop growth and development, 
processes and data extrapolation and prediction. 
Crop model on the other hand is aSimulation of 
plant growth while model is an abstraction of 
identifiable system using a set of equations 
which would depict its behavior (Wu, 2023). 
Models mimic or mimic the behavior of a crop, or 
parts of it such as the leaves, roots, stem, yield, 
and other factors that are related to development 
of a crop, and the soil moisture content on a daily 
basis, climate or weather conditions, and the 
practices to be followed on the crop (Lesk et al., 
2022). 

 
Crop simulation models reflect the current 
scientific information available from the field of 
crop physiology, plant breeding, agronomy, agro-
meteorology, soil physics, soil chemistry, fertility, 
pathology, entomology, and economics 
(Sharangi et al., 2023). These models are useful 
for the assessment of changes in genetic quality, 
for the approximation of historical genetic 
changes from experimental information and for 
the suggestion of congeneric types of plants in 
larger surroundings, to promote agro-advisory 
systems for weather and diseases (Trewavas et 
al., 2023). Environmental factors acting on crop, 
soil factors and dynamics, crop genotype and 
phenotypes, and management practices have a 
profound impact on yield. Climatic factors such 
as seasonal and daily climatic requirements are 
influential in cropping strategies and disease 
incidences, crop yield, and crop value (Vadez et 
al., 2024; Gojon et al., 2023). Therefore crop 
simulation models have the potential to provide 
crop growth responses to weather conditions, 
soil type, crop management and genetic 
composition. They explain the joint action of 
weather, properties of the soil, and crop factors 
that affect performance and crop simulation 
models that serve as an important adjunct in field 
research for designing new crop management 
systems (Cooper et al., 2021). 

 
1.3 Types of Crop Models 
 
Crop models may be classified according to their 
aim, crop focus, and structure. Typically, there 

are two categories of crop models: descriptive 
and explanatory, but in practice, the contours of 
the classification are not always clear because 
the majority of process-oriented models contain 
elements of empirical equations. Regression 
models as well as other purely empirical models 
are significantly different. 
 

Simulation Models: They are intended to 
simulate system behavior during short time steps 
(daily time steps) while accounting for daily 
weather and soil status. They permit the 
identification of management choices and 
analysis of a variety of management strategies. 
Simulation models generically use one or more 
differential equations to determine rate and state 
variables throughout the planting to harvest 
continuum (Ainsworth & Eden, 2020). 
 

Optimizing Models: These models are used for 
finding the decision-making inputs needed for 
managing in operation of the practical system 
models, solving these models with optimization 
algorithms (Ridha et al., 2021). 
 

Static Models: Time is not a factor in developing 
static models, yet crop products are stock and 
build up over time. 
 

Dynamic Models: These models produces 
quantitative forecasts of some phenomenon like 
yield or rainfall and for which there is no concept 
of probability distribution, variance or random 
parameters. Thus, the dynamic models may be 
insufficient for certain applications, especially for 
the purpose of rains forecast (Ramsey, 2020). 
 

Descriptive Models: The descriptive models 
give an almost direct representation of the 
behavior of a system. They employ the obtained 
experimental data to develop one or more 
mathematical formulas that would describe the 
operating behavior of the system involved. 
 

Empirical Models: Empirical models are 
mathematical models, where the real world is 
represented with few variables of the said 
system. They are applied in crop forecasting but 
are usually not realistic and versatile; they are 
based on data derived from observations and 
look like regression equations which have few 
variables. 
 

Explanatory Models: They give a quantitative 
account of the phenomena and processes that 
determine the systems properties and behavior. 
The growth of quantifiable parameters such as 
photosynthesis rate and expansion of scaled up 
as well as qualitative parameters such as crop 
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biomass and yield can be determined using an 
Exploratory crop growth models. Some of these 
models are often used in irrigation management 
base on water balance (Morales et al., 2020). 
 

1.4 Crop Model Applications 
 

Crop growth models are used in many areas of 
applications, such as yield forecasting, 
agriculture, farm management, climatology and 
agro-meteorology. Through these models, it 
becomes possible to identify potential growth and 
set biological constraints on agricultural 
production where crop yields can be forecast and 
crop performances in large regions extrapolated 
and interpolated based on the results of other 
scientific disciplines (Morales & Villalobos, 2023). 
The applications of crop simulation models can 
be categorized as follows: 
 

• The environment palms for 
characterization 

• Optimizing Crop Management 

• Pest and disease are other challenges of 
crop production that requires proper 
management. 

• Impact of Climate Change 

• Yield Forecasting 

• Optimal Sowing Dates 
 

Research Understanding: Such model 
construction helps to consolidate ideas gained 
from separate disciplines’ studying; it is possible 
to reveal principal actors in the system and the 
gaps of knowledge when constructing models 
(Franco et al., 2021). 
 

Integration of Knowledge across Disciplines: 
Crop models are viewed as some integration 
layers on one or another level connecting 
different branches of science, hence facilitating 
interdisciplinary cooperation (Silva & Giller, 
2020), 
 

Improvement of Experiment Documentation 
and Data Organization: Crop models help in 
exposing experimental data in a systematic 
manner and organizing this data in a systematic 
manner (Jones et al., 2017). 
 

Site-Specific Experimentation: Models can be 
blown up to individual contexts,  which allows 
one to evaluate crop development, yield, climate, 
and farming practices with a local adjustment 
(Wang et al., 2022). 
 

Yield Analysis: Examination by models with 
strong physiological support makes it possible to 
generalize the results obtained to other settings, 

thereby improving the understanding of yield 
fluctuations. 
 

Climate Change Projections: Since crop 
production depends on weather conditions, 
changes in the weather system all over the world 
will have a major effect on crop production 
efficiency and yields. Therefore, climate analysis 
for the current and future is important for the 
formation of the adaptation measures (Habib et 
al., 2022). 
 

Scoping Best Management Practices: Crop 
Models are useful to determine the eco friendly 
managing practices that will improve yield of 
crops. It refers for instance, to choices such as 
the right time to sow or plant in areas receiving 
irregular rain such as arid and semi-arid areas. 
Moreover, models can predict the most 
appropriate rate of application of fertilizers, types 
of irrigation, types of soil management, for 
example tilling and mulching, and even 
drainage/infiltration (Bodner et al., 2021). 
 

Yield Forecasting: Pre-harvest estimations of 
crop yields over large regions are very important 
to researchers and farmers in terms of setting up 
work and resource plans. 
 

Extrapolation to Alternative Cropping Cycles: 
Physiological based models enable extrapolation 
to other experimental years and sites, thus 
allowing the estimation of temporal and spatial 
changes (Hanson & Walker, 2020). 
 

1.5 Limitations of Crop Models 
 

The ability of crop models to predict crop 
development, yield, soils, and climate is therefore 
hampered by inadequate knowledge of 
endogenous processes and compute capabilities 
(Reynolds et al., 2021). In some cases, the 
results given by the model depend even on the 
input parameters used for model estimation. 
Data sampling errors affect the observed data 
negatively, and accuracy in climatic data affects 
performance of the models. While historical 
weather data play an important role in model 
development, long-term data are scarce; 
sometimes there are not enough records, or only 
few variables are available (rainfall, minimum 
and maximum temperature etc.) (Van et al., 
2021).  Therefore, performances of the crop 
models depend with the user experience, 
accuracy of the experimental measurements and 
sampling methods. As the saying goes, garbage 
in, garbage out – meaning that to get a good 
model, one has to feed it with good field data. 
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1.6 AquaCrop Model: Concepts and 
Description 

 

In light of this, the AquaCrop model meets 
criteria of simplicity, robustness and captures 
higher accuracy thus can be essential for many 
practitioners, mainly irrigation and water 
management practitioners, extension worker, 
government agencies, NGO and researchers. 
The model in this model is used for on-farm 
practice, irrigation scheduling and planning for 
climate change, and other researches on soil 
water balance. It has been developed for a 
purpose of studying the effect of water and 
management of soil on the germination of a large 
number of herbaceous crops and their 
productivity(Sanatawy et al., 2021; Shaheb et al., 
2021). Being easy to use and delivering accurate 
results, AquaCrop has been applied to simulate 
crop growth and yield for maize (Nie et al., 2021; 
Araya et al., 2016) tea barley, wheat, rice, 
sunflower, cotton, potato, hot pepper, cabbage, 
sugarcane and faba bean, under different 
management, soil and climatic factors. 
 

1.7 Key Parameters in Aqua Crop 
 
The AquaCrop model focuses on five primary 
parameters that respond to governing factors: 
planting and flowering date, soil depth, over head 
cover and above ground biomass, and yield 
(Nzimande, 2021). The model starts with 
predicting the changes in crop canopy with time 
from emergence to reach beyond the potential 
crop height using realistic factors like; the initial 
canopy cover per seedling (CCo), plant density, 
growth canopy coefficient (CGC), and maximum 

canopy cover(CCx) (Colbach et al., 2021). In this 
regard, AquaCrop ‘singles out green canopy 
cover rather than the leaf area index(Li et al., 
2024). 
 

The model also includes the root system of the 
plant in the form of the effective rooting depth as 
well as that of the water extraction. The effective 
rooting depth is therefore described as the extent 
of depth within which the majority of root water 
uptake is derived from(Liu et al., 2021). Still, 
there can be differences owing to crop species, 
and this model input has been adjusted with 
respect to soil profile, and extraction patterns as 
suggested in Fig. 1. 
 

The graphical representation points to the fact 
that various dynamic physiological processes are 
determined by climatic as well as soil factors. 
Biomass production is assumed to be a function 
of evapotranspiration while crop yield is 
obtainable from biomass through the harvest 
index. In AquaCrop, canopy development is 
described using the phenological state of green 
CC or degree of canopy cover. Growth of canopy 
area starting at emergence and up to full canopy 
closure is exponential during the first half of plant 
development and exponential decay in the 
second half. This process is quantified using the 
following equations: 
 

CC=CC0 * eCGC*                                                              (1) 

 

CC =CCx – (CCx-CC0) e* CGC                 (2) 
 

These equations offer an ideal approach toward 
enabling simulation of crop growth characteristics 
in a context of AquaCrop (Berhane et al., 2018). 

 

 
 

Fig. 1. Aqua Crop model 
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Where, in the AquaCrop model CC stands for the 
canopy cover at time t and CCo is the initial 
canopy cover or the canopy cover at t=0. The 
canopy growth coefficient is depicted by the 
acronym CGC and is represented by fractions of 
a day or degree day. CCx defines the canopy 
cover, while and ttt indicates the time duration in 
days or degree days. 
 

The AquaCrop model effectively keeps the 
relationship between crop water consumption 
and crop yield direct. This approach developed 
from the FAO Irrigation and Drainage paper No. 
33 by dissecting non-productive soil evaporation 
(EEE) from productive crop transpiration (Tr). 
The model allows the direct platform estimate of 
biomass from actual crop transpirational loss with 
the use of water productivity factor. The core 
equation that governs the AquaCrop growth 
engine is: 
 

B = WP∗∑(3/TriEToi)B = WP∗∑((3i)/(TrETo))       (3) 
 

Here, BBB is the total biomass yield in terms of 
the biomass amount per unit area (kg/m^2), 
TriTr_iTri denotes the daily crop 
evapotranspiration, EToiETo_iEToi stands for the 
reference evapotranspiration and WP∗WP^WP∗ 
is crop water use efficiency. 
 

From the modeled plot of plant growth N x B x E 
x C, for most crops only a fraction of the total 
generated biomass is used in the harvested 
organs giving yield (Y). The ratio of yield to 
biomass is known as the harvest index (HI), 
expressed mathematically as: 

Y = HI ⋅ B Y = HI B (4)Y = HI⋅B               (4) 

 

Two components are believed to be essentially 
independent of each other, at least regarding the 
underlying processes that delivers biomass 
production (BP) and harvest index (HI). Hence, 
the breakdown of yield into biomass as well as 
harvest index allows assessment of the impacts 
of specific environmental conditions or stress 
effects on BP and HI. Fig. 2 shows the overall 
calculation scheme of the AquaCrop model and 
the way how the model was developed 
progressively ((Berhane et al., 2018). 
 
1.8 Yield Response Factor 
 
The parameter for the yield response to water 
deficit conditions is the yield reduction factor 
(Ky). Consequently the impact of water stress 
relative yield decrease and relative 
evapotranspiration deficit are different across 
species and it becomes desirable to estimate this 
relationship. This is expressed by the empirically 
determined yield response factor (Ky).Yield 
response factor represents the relationship 
between crop production process and water 
usage, and may encompass a biological, 
physical, or chemical nature. The estimates of 
the yield response factor are grouped into the 
following empirical equation(Beaudoin et al., 
2023). Crop yield response at different growth 
stages can be calculated as follows: 
 
1−YmYa=Ky(1−ETmETa) 
 
This equation helps in comprehending the yields 
effects in the situation, where water is abundant, 
or scarce. 

 

 
 

Fig. 2. AquaCrop Calculation Scheme with Indicated Processes (a-e) Impacted by Water Stress 
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a. Yx and Ya denote here the theoretical 
and actual yields of crops while ETx and 
ETa refer to the actual and theoretical 
evapotranspiration. Ky is called the yield 
response factor that defines yield losses 
due to decreased evapotranspiration. It 
reflects this relationship in their water 
production function. According to (Yang et 
al., 2020) the Ky values are crop-specific 
and fluctuate throughout the growing 
season, depending on the growth stages: 

• Ky>1Ky > 1Ky>1: It is a water-sensitive 
crop, mainly because small reductions in 
the amount of water on the crop, because 
of stress, trigger proportionately greater 
yield impacts. 

• Ky<1Ky < 1Ky<1: It also has higher 
water use efficiency than the control, 
partially recovering from the stress and 
experiencing less than proportional yields 
decline for decreased water use. 

• Ky=1Ky = 1Ky=1: Water conservation 
means yield reduction and therefore, 
correlation exists between the two. 

 

Table 1. Seasonal Ky values from FAO 
irrigation and drainage 

 

Crop Ky (Yield Response Factor) 

Alfalfa 1.1 
Banana 1.2 - 1.35 
Maize 1.25 
Onion 1.1 
Potato 1.1 
Soybean 0.85 
Sunflower 0.95 
Tomato 1.05 
Sugarcane 1.2 

 

Yield response of crops to water is generally 
species specific. Yield response factors (Ky) 
vary from crop to crop as shown in the table 
below, Table 1. Water stress vulnerability in 
plants varies in the family and species as well at 
the developmental stages within a species. For 
instance, flowering and yield formation stages 
are the most affected by stress as opposed to 
stress experienced during ripening. In contrast, 
vegetative stage is less sensitive to water stress 
if only the plant can recover from water deficit 
(Aru et al., 2022). The Ky values for crops at 
various growth stages are listed below in a 
tabular form in Table 2. 
 

1.9 Implications of the Yield Response 
Factor 

 

This yield response to water deficit is the most 
important aspect for production planning. 

Hence, where both crops are grown in the same 
locality and the intention is to optimize 
production per volume of water, provision of 
water supply should be given to maize. On the 
other hand when the overall production within 
the given region is the ultimate goal where the 
constraint is not land based on the amount of 
water, the available water should be utilized 
fully in meeting the water requirements of Maize 
over an area of limited size (Kheir et al., 2021). 
The results for overall production of sorghum, 
irrigation can be expanded to physical area that 
water can reach, even if the water demand is 
not fulfilled in full extent, but certain limits of 
water scarcity must not be overstepped. 
 

1.10 Calculation Procedures 
 

The calculation procedures to determine actual 
yield (Ya) based on Equation 1 involve four 
steps: 
 

Estimate Maximum Yield (Yx): Estimate the 
highest possible yield from an adapted crop 
variety by its genetic potential and climatic 
conditions neglecting the prospects of 
agronomic factors, such as water and nutrient 
supply, pests, and diseases (Cortés & López, 
2021). 
 

Calculate Maximum Evapotranspiration 
(ETx): Maximize potential evapotranspiration 
using standard approaches, in order to 
guarantee crop’s need for water uptake is met 
(Pereira et al., 2021). 
 

Determine Actual Crop Evapotranspiration 
(ETa): Determine the approximate amount of 
evapotranspiration under certain circumstances 
with reference to availability of water to the crop 
(Tolomio& Casa, 2020). 
 

Evaluate Actual Yield (Ya): Employ the 
appropriate yield response factor (Ky) on the 
yield and in total for the entire growing season 
or for the various growth phases (Saudy et al., 
2023). 
 
How to Calculate Maximum Yield (Yx): 
 

Yield level of a crop (Yx) with respect to specific 
management intensity depends mainly on its 
genotypic potential and response to 
environmental conditions. It is defined as the 
obtained yield of a high-yielding variety adapted 
to the growing period, time available for the 
genotype to grow and mature, nutrition, pest 
and disease stresses do not affect yield (Begna, 
2020). 
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Method of Computing the Maximum 
Evapotranspiration (ETx): 
 

Maximum evapotranspiration (ETx) indicates 
where water supply is in excess and the 
formation of water stress is impossible. ETx 
refers to the rate of maximum evaporative 
demand of a healthy crop on a large scale field 
under good agronomic and water management 
practices. Therefore, ETx is computed using the 
reference evapotranspiration (ETo) and the crop 
coefficient (Jaramillo et al., 2020). 
 

The higher the Ky value, the more substantially 
yield drops for the same decrease in ET owing 
to water deficit during the particular period or 
growing season (refer to Fig. 3). 
 

1.11 AquaCrop Model for Irrigation Water 
Management and Soil Moisture 
Balance 

 
Hence the AquaCrop model plays a central role 
in the management of irrigation water in view of 
climate change that has a direct bearing on crop 
yield and food security. Tackling the availability 

of water from the ancient period the availability 
of water hinders the crop production in the 
areas where they are not sufficient to feed the 
crops (Hussain et al., 2022). Within the 
AquaCrop framework, water management is 
approached through several key parameters: 
 

Rain-Fed Agriculture: This scene is without 
any filtration process of irrigation. 
 

Irrigation: The type of irrigation that was used 
in a particular experiment is also freely 
selectable by the users; this may be drip 
irrigation, sprinkler irrigation, or probably surface 
irrigation such as furrow or flood irrigation 
among others. There are limb parameters like 
water depth and irrigation schedule and the 
model can automatically produce irrigation 
schedules in fixed intervals, water depth or 
percent soil moisture (Hadidi et al., 2022). 
 
Irrigation Strategies: Within AquaCrop, the 
user has the means for applying such 
techniques as supplemental and deficit irrigation 
regimes. 

 

Table 2. Soil water stress coefficients and their effect on crop growth 
 

Soil Water Stress Coefficient Direct Effect Target Model 
Parameter 

Ksaer: Soil water stress 
coefficient for water logging 
(aeration stress) 

Reduces crop transpiration Trx 

Ksexp,w: Soil water stress 
coefficient for canopy expansion 

Reduces canopy expansion and (depending on timing 
and strength of the stress) might have a positive effect on 
the harvest index 

CGC and HI 

Kspol,w: Soil water stress 
coefficient for pollination 

Affects flowering and (depending on duration and 
strength of the stress) might have a negative effect on the 
harvest index 

Hlo 

Kssen: Soil water stress 
coefficient for canopy 
senescence 

Reduces green canopy cover and hence affects crop 
transpiration 

CC 

Kssto: Soil water stress 
coefficient for stomatal closure 

Reduces crop transpiration and the root zone expansion, 
and (depending on timing and strength of the stress) 
might have a negative effect on the harvest index 

Trx and HI 

 

 
 

Fig. 3. Water production functions for maize under deficit conditions 
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Intensive management of the smallholders’ 
irrigation systems under rain fed scheme is 
essential in increasing the crop yield as well as in 
responding to the climate variability. AquaCrop is 
a water-driven modelling system that can predict 
yields responses to water with limited essence 
and little data input for most field and vegetable 
crops globally. This tool has been applied 
correctly for water management, in irrigation 
scheduling, and in deficit irrigation for a variety of 
crops; wheat, maize and others; tea crop; barley; 
and the cotton crop (Snyder et al., 2024). 
 
The AquaCrop model calculates crop intake 
requirements for water (ETC), crop coverage, 
biomass and yield, soil leakage and water 
accumulation in the root zone, and overall 
performance under conditions of climate change. 
It can imitate low level water application by 
means of deficit applications and total 
applications (Cheng et al., 2021). Use of 
AquaCrop model for estimating deficit or 
supplemental irrigation conditions is very 
important for enhancing crop water productivity 
and irrigation water use efficiency in the arid and 
semi arid regions. Research conducted on the 
use of deficit irrigation bore crop response 
functions for the conditions which arise with 
water deficits at various growth phases (Chand 
et al., 2020). 
 
Yield reduction due to water stress is estimated 
in AquaCrop using the stress coefficients (Ks). 
When soil water depletion in the root zone is less 
than upper threshold, water stress is assumed to 
be minimal (Ks = 1) and no effect is observed on 
crop processes. To however in reduce soil water 
yet in the root zone deposit declines from the 
upper stigma, specific processes experience 
stress from soil water stress. Nevertheless, as 
soon as the SM decreases below the lower 
threshold, negative effects increase (set Ks = 0); 
the processes are inhibited. The four major 
coefficients adopted to estimate such effects are 
associated with leaf expansion rate, stomatal 
conductance, canopy browning, and pollination 
drops (Yadav et al., 2022). 

 
1.12 Application of AquaCrop Model for 

Simulating Soil Moisture Balance 
 
AquaCrop has a distributed form and may have 
up to five different layers with different texture in 
the profile, including all traditional textural 
classes defined in the USDA triangle(Roquette et 
al., 2022). The model also performs a daily water 
balance that records all water inputs and outputs, 

including infiltration, surface runoff, deep drain, 
evaporation, and transpiration rates and changes 
in water body (Mohajerani et al., 2021). This daily 
soil water balance is important in observing the 
physical and physiological events on crops. 
 

One thing that differentiates AquaCrop’s water 
balance is the separation of the water lost 
through evaporation of the soil (Es) from that lost 
through transpiration of the plant (Tc). When 
simulating Es, the model includes conditions 
such as mulching, withered canopy cover, 
localized irrigation and partial soil wetting and the 
canopy shade effect (Allen et al., 2020). The soil 
moisture balance is calculated using the 
equation: 
 

ETC = Purchases + Investments – Receipts – 
Donations ± Change in Stocks (7)• ETC = crop 
water demand• P = precipitation it may rain, 
snow, hail or sleet• S = ∆ m, where m is the 
matrix of change in the soil moisture that may be 
either positive or negative.Ariable depths, 
accommodating up to five layers of different 
textures along the profile, incorporating all 
classical textural classes outlined in the USDA 
triangle (Malone & Searle, 2021). The model 
conducts a daily water balance, accounting for all 
incoming and outgoing water fluxes such as 
infiltration, runoff, deep percolation, evaporation, 
and transpiration while tracking changes in water 
content (Liebhard et al., 2022). This daily soil 
water balance is crucial for monitoring the 
physical and physiological processes of crops. 
 

A unique aspect of the AquaCrop model's water 
balance is its distinction between soil evaporation 
(Es) and crop transpiration (Tc). In simulating Es, 
the model incorporates factors such as mulching, 
withered canopy cover, localized irrigation with 
partial wetting, and shading effects from the 
canopy (Tuzet et al., 2022). The soil moisture 
balance is calculated using the equation: 
 

{ETC} = P + I - R - D + ΔS 
 

Where: 
 

• ETC = crop water requirement 
• P = precipitation (typically rainfall) 
• I = irrigation 
• R = runoff 
• D = drainage 
• S = change in soil moisture (can be 

positive or negative) 
 
Water deficits are considered in AquaCrop by 
using stress coefficients (Ks) to characterise the 
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Table 3. Impacts of Changes in Soil Water Content (SWC) on Different Crop Processes 

 
Process Impact of Water Deficit Description 

Crop Growth Complete Halt at 
Maximum Stress 

When Ks reaches the lower threshold, growth is entirely 
suppressed. 

Stomatal 
Conductance 

Reduction Below Upper 
Threshold 

Stored soil water below the upper threshold reduces 
stomatal activity, affecting transpiration and photosynthesis. 

Root Water 
Uptake 

Proportional Decline with 
Decreasing SWC 

Root water uptake diminishes as soil moisture declines, 
affecting nutrient transport and overall plant health. 

Biomass 
Accumulation 

Slows with Reduced SWC Lower soil water reduces biomass production due to limited 
physiological activity. 

Crop Yield Reduction Due to 
Prolonged Water Stress 

Prolonged stress leads to irreversible damage, ultimately 
reducing crop yield. 

 

impacts of water stress on crop physiological 
processes. At or above the upper threshold of 
root is zone depletion, Ks is equal to 1 indicating 
that water stress is nonexistent From the upper 
threshold, stress affects crop processes as 
stored soil water reduces below the stated limit. 
At one end of the defined boundary, the damage 
associated with Ks is maximal causing a 
complete halt in growth (París et al., 2021). Table 
3 presents a summary of effects of soil water 
stress in different processes Here, Table 3 
Impacts of changes in SWC on different 
processes. Precision and assessing experiences 
used in testing the AquaCrop model in various 
crops and soil types show it can predict the 
moisture content in the soil and daily water 
movement (He et al., 2021). 
 

2. THE USE OF AQUACROP MODEL IN 
SOIL FERTILITY AND SALINITY 
PROGRAMMING 

 

2.1 Soil Fertility Management 
 
It is, therefore, important to have an 
understanding of its productivity and fertility 
before taking up farming as a business. Although 
AquaCrop does not directly simulate nutrient 
cycles and balances, it adjusts fertility effects 
through a set of soil fertility stress coefficients for 
four key productivity components: canopy growth 
coefficient (CGC), maximum canopy cover 
(CCx), canopy decline coefficient (CDC), water 
productivity (Berhane et al., 2024). Soil fertility 

stress is a scale that is equally divided into 
percentage; 0% meaning no stress at all or no 
limitation in soil fertility and 100% meaning the 
crop cannot be produced in such soil. Soil fertility 
coefficients (Ks) are ranged from 1 (no soil 
fertility stress) through 0 (full soil fertility stress). 
This is shown in Table 4 where fertility stress has 
been known to influence canopy and biomass 
formation. 

 
2.2 Salt Balance and Soil Salinity 

Management 

 
Soil fertility stress is expressed by the average of 
the electrical conductivity of saturation soils in 
the root zone. By using the model in AquaCrop, 
the model can estimate the rate of salt that is 
entering a plant and the rate of salt ions that can 
leave the plant. They either infiltrate from the 
surface through the agency of water or by water 
from an underlying water table that supplies 
saline water to the soil (Minhas et al., 2020). The 
upper and lower salinity stress coefficients (Ks) 
are 0 and 1. At the lower limit of 4-ECe, there is 
crop damage to growth and development hence 
a Ks lower than one. However, when Ks reaches 
values close to the upper limit of the scale, for 
high salinity of the soil, it causes serious 
constrains into the crop growth and yield and 
may totally cease at a value of zero (Cameron, 
2020). Table 4 presents a synthesis of the impact 
of water soluble soil salinity stress coefficients on 
crop growth and development indices. 

 
Table 4. Soil salinity stress coefficient 

 
Soil Salinity Stress Coefficient Direct Effect Target Model Parameter 

KsCCx Reduces canopy cover CCx 
Ksexp Reduces canopy expansion CGC 
Kssto Reduces crop transpiration Kssto 
fCDecline Decline of the canopy cover once 

maximum canopy cover is reached 
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2.3 Cropping Models of Aquaculture 
Related to Climate Change Adaptation 
and Mitigation Processes 

 
Climate change forecasts show that the world will 
be warmer by 50 years at most. Yet, the effects 
of increasing temperatures on rainfall temporal 
and spatial distribution in the SATs of Africa and 
Asia are still uncertain. Cross-sectional studies 
for the current situation have also been carried 
out as well as projections for the future where 
northern climate is expected to show variable 
climates in the 2030/50s that is very 
unpredictable affecting the crop growth and 
productivity (Samuelson et al., 2022). 
 

Literature review on climatic change at different 
locations of the study area shows proving higher 
Maximum as well as minimum temperature in the 
future in Ethiopia. Increased level of CO2 
concentration under various conditions will affect 
crops yield of in mid to the end of the 21st 
century. It is also expected that temporal and 
spatial rainfall variability will influence the rate of 
crop growth as well as its productivity, thus 
sowing period flexibility and supplement with 
irrigation as among the major coping strategies 
(Ainsworth & Long, 2021). 
 

2.4 Statistical Indicators Applied for 
Evaluating the Efficiency of the 
AquaCrop Model 

 
Observed crop and soil moisture parameters 
replicated by the AquaCrop model range from 
basic inputs that have been calibrated. However, 
the efficiency and accuracy of simulated 
parameters for example soil moisture content, 
dry matter, crop canopy cover, transpiration, 
runoff and drainage has to be tested against 
statistical indices in order to determine how 
closely the simulated scenario fits the observed 
one. 
 

Root Mean Square Error (RMSE): A number of 
these methods includes; RMSE which defines 
total or average difference between observation 
and simulation (Liemohn et al., 2021). It is 
calculated as follows: 
 

Normalized Root Mean Square Error (N-
RMSE): In AquaCrop versions 5 and 6, N-RMSE 
is used to assess the simulacra and original 
estimated parameters with the closer to zero, 
being the better results. 
 

Coefficient of Determination (R²): This 
indexing provides the statistics of the overall 

goodness of the model as fitted. As mentioned in 
the AquaCrop manual, although the referential 
analytical function of R² would suggest that it 
exactly compares the measured with predicted 
values, in the case of modelling studies, R² 
reflects the proportion of the variance in 
observed values that can be accounted for by a 
particular model. P-values vary between 0 and 1, 
where closer to 1, depict better model efficiency. 
 
Coefficient of Efficiency (E): Mentioned by 
Nash and Sutcliffe in 1970, this index measures 
the magnitude of the difference between actual 
and proposed data: It quantifies the overall 
deviation of simulated values from the mean of 
observed values: 
 

3. CONCLUSION AND RECOMMENDA 
TIONS 

 
Crop models have been widely applied to 
generate potential strategies of raising crop yield 
potential in different climates and soil types, as 
well as farming practices. They are used to 
measure impacts of climate change on crop 
growth and yield, estimate crop 
evapotranspiration, irrigation requirement, soil 
water management, LAI, growth of dry matter 
and yield. Crop models are used for farm level 
decision making concerning micro management 
practices such as irrigation, water conservation in 
the soil and run off, genetic engineering of crops, 
and to measure water and nutrient deficiencies at 
various developmental stages of crops. Crop 
modeling has other significant types of integrated 
research engagements inclusive of 
multidisciplinary activities for extensive research 
outcomes. Interaction between computer 
engineers, agronomists economists and 
breeders, soil scientists and climatologists can 
improve the credibility and relevance of crop 
simulation models enabling farmers to access 
research information and increase production to 
meet food security in the country. AquaCrop, 
DSSAT, APSIM, and Wofost models have been 
successfully used in different studies on field on 
effects of moisture stress and deficit, on irrigation 
and nutrient stresses especially nitrogen, sowing 
date and climate change on crop yield in 
Ethiopia. The AquaCrop model holds a good 
compromise between usability, stability, and 
realism while evaluating various crop parameters 
and management practices under different 
climatologic, edaphic, and managerial 
environments. This model adequately mimics 
crop cover canopy, biomass accumulation, and 
relative soil moisture regimes based on stress 
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coefficients like stomatal closure, canopy size 
increase, pollination, flowering. 
 

Simulation of crop canopy of the AquaCrop 
model, dry matter, soil moisture balance, grain 
yield, evapotranspiration, water use efficiency 
and runoff are compared with the observed or 
measured data and the performance of the 
model is judged by using various statistical 
parameters such as Root Mean Square Error 
(RMSE), Normalized Root Mean Square Error 
(N-RMSE), Index of agreement, and Model 
efficiency. The current crop models such as 
AquaCrop can quantify the impacts climate 
change on crops under current climate conditions 
and future climates. As such, governments, 
policymakers, and relevant stakeholders in 
agricultural research should focus on new 
practical research directions, personnel 
development (training, seminars, experience 
exchange), and funding/photo268.JPG and 
infrastructure support (laboratories, instruments, 
and equipment). 
 

The growing complexities of agricultural research 
call for unfolding new qualities in university, 
research center, NGOs and other stakeholders in 
the twilight of the 21st century. For enhanced 
food security and upgrade of the wellbeing of 
Ethiopian farmers, there is need for 
enhancement of inter and intra organizational 
communication. 
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